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Abstract

Plague in Brazil is poorly known and now rarely seen, so studies of its ecology are difficult. We used ecological niche models
of historical (1966-present) records of human plague cases across northeastern Brazil to assess hypotheses regarding
environmental correlates of plague occurrences across the region. Results indicate that the apparently focal distribution of
plague in northeastern Brazil is indeed discontinuous, and that the causes of the discontinuity are not necessarily only
related to elevation—rather, a diversity of environmental dimensions correlate to presence of plague foci in the region.
Perhaps most interesting is that suitable areas for plague show marked seasonal variation in photosynthetic mass, with
peaks in April and May, suggesting links to particular land cover types. Next steps in this line of research will require more
detailed and specific examination of reservoir ecology and natural history.
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Introduction

Plague arrived in Brazil during the Third Pandemic, in October

1899, imported by ship traffic to Santos, in São Paulo state, and

was rapidly diffused to other coastal cities. By 1906, it had

dispersed by means of land and sea commerce more broadly, and

had become established in native rodent populations, particularly

in the northeastern sector of the country [1,2]. Nonetheless,

records of plague in Brazil are sparse through the 1920s, making

detailed tracking of the pattern of spread of the disease in the

region difficult or impossible [1,3].

Only by around 1936 were data on plague and its control in

Brazil regularly collated and archived. Based on analyses of these

data (for 1936–1966), Baltazard [1] identified numerous distinct

plague foci occurring in different environmental contexts, a

viewpoint that was updated by Vieira & Coelho [4], based

principally on elevation. These foci appear to exist independently

of one another in time and space [1], and overall numbers of

human cases varied from 20 to 100 until the 1970s. Since that

time, all of the foci entered a period of relative inactivity, with few

or no human cases [5,6,7,8]. The last significant outbreak in Brazil

was in the late 1980s in Paraı́ba [9].

The purpose of this contribution is to present a first range-wide

analysis of the geography and ecology of plague transmission in

northeastern Brazil using tools drawn from the emerging field of

ecological niche modeling, which is beginning to see application to

plague biology [10,11]. Although no recent plague transmission to

humans has been recorded in this region, plague remains as a

zoonosis across much of northeastern Brazil [12], making a

thorough understanding of its geographic distribution an ongoing

priority. Here, we marshal new tools from quantitative biogeog-

raphy in the form of ecological niche modeling approaches, which

related known points of occurrence to raster geospatial GIS data

layers to estimate the ecological niche of a species or other

biological phenomenon, such as transmission of a disease [11].

The result is both a spatial prediction of areas of potential

transmission and a first-order evaluation of environmental

correlates of plague transmission in northeastern Brazil.

Methods

Input Data
Plague case occurrences. We drew occurrence data from

the Serviço Nacional de Referência em Peste do Centro de

Pesquisas Aggeu Magalhães, Recife, Pernambuco. The data cover

the period 1966-present, and represent only cases with laboratory

confirmation by means of bacteriological examination or

serological testing [6,7,8,9,13].

Case-occurrence data were referenced spatially to the particular

town or ranch where the affected person lived, which we

georeferenced by means of referring to municipal maps at diverse

scales published by the Instituto Brasileiro de Geografia e

Estatı́stica. Of the total of 203 laboratory-confirmed plague cases,

which fell into 157 distinct localities, 120 localities could be

georeferenced with a spatial precision of 3 km or finer, and most

to within 500–1000 m.
Environmental data. We sought fine-resolution geospatial

data characterizing environmental variation across the landscapes

of northeastern Brazil for the time period of interest. We estimated

potential risk areas for plague case occurrences based on indirect,

landscape-scale measures that are likely correlates of the actual

environmental factors associated with the disease-vector-host
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interactions that affect the ecology of this disease[14]. In

particular, we focused on correlates of key environmental

dimensions related to precipitation, temperature, vegetation,

topography and land use, so we explored two principal

environmental data sets. First, we chose imagery from the

Advanced Very High Resolution Radiomater [AVHRR; 15]

satellite, in particular using multitemporal imagery summarized as

Normalized Difference Vegetation Indices [henceforth ‘‘NDVI’’;

15,16] for 12 individual months in the year spanning from April

1992 – March 1993, which was the period of availability of

imagery closest to the period of plague transmission characterized

by our occurrence data (a single year was used owing to limited

availability of monthly data AVHRR sets). The NDVI data layers

that we used are estimators of the photosynthetic mass presented

within 1 km grid cells across the landscape [17]. We used

individual monthly NDVI values to provide the model with

information about seasonal variation in ‘greenness,’ which has

been seen to be important in previous exercises in prediction of

disease transmission geography [18,19]. Although clearly other

means of summarizing seasonality in greenness of landscapes are

available [e.g., 20], the data sets and methodologies described in

the latter paper have not been made broadly available.

Second, we explored the utility of fine-resolution interpolated

climate dimensions [21]. These data, consisting essentially of

monthly temperature and precipitation values averaged over

1950–2000, have been processed into 19 ‘bioclimatic variables’

that are thought to be more biologically relevant than the raw

values [21]. Because of suspected high levels of intercorrelation

among these variables, we explored correlations among them, and

eliminated one member of each variable pair that showed high

correlations, choosing the particular variable to eliminate based on

ease of interpretation of the variable, leaving the following

variables for analysis: annual mean temperature, mean diurnal

range, maximum temperature of warmest month, minimum

temperature of coldest month, annual precipitation, precipitation

of wettest month, and precipitation of driest month.

Based on initial testing, we also explored inclusion of elevation

as a predictor layer. A digital summary of elevational variation

across the study area was obtained from the Hydro-1K data set

[22], with 1 km native spatial resolution. In sum, we analyzed

NDVI and climate data sets, each with and without elevation data.

All layers were clipped to the area within 300 km of known plague

occurrences for analysis (Figure 1).

Ecological Niche Modeling
Methods and approaches for estimating ecological niches from

species’ occurrence data have seen considerable exploration in

recent years [23,24]. Outcomes of these tests have been mixed,

with some serious criticisms of the algorithm used herein, the

Genetic Algorithm for Rule-Set Prediction (GARP) [25]—these

criticisms [23,26], however, have been based either on misunder-

standings of how to use the algorithm [27] or on artifactual

differences in performance measures [28,29]. In reality, and when

properly used and evaluated, GARP offers estimates of species’

ecological niches that are highly robust to small sample size and to

broad gaps in spatial coverage of landscapes in terms of input data

[28,29]—for this reason, we used this approach throughout this

study.

GARP is an evolutionary-computing method that estimates

niches based on non-random associations between known

occurrence points for species and sets of GIS coverages describing

the ecological landscape. Occurrence data are used by GARP as

follows: 50% of occurrence data points are set aside for an

independent test of model quality (extrinsic testing data), 25% are

used for developing models (training data), and 25% are used for

tests of model quality internal to GARP (intrinsic testing data).

Distributional data are converted to raster layers, and by random

sampling from areas of known presence (training and intrinsic test

data) and areas of ‘pseudoabsence’ (areas lacking known

presences), two data sets are created, each of 1250 points; these

data sets are used for rule generation and model testing,

respectively.

The first rule is created by applying a method chosen randomly

from a set of inferential tools (e.g., logistic regression, bioclimatic

rules). The genetic algorithm consists of specially defined operators

(e.g. crossover, mutation) that modify the initial rules, and thus the

result are models that have ‘‘evolved’’—after each modification,

the quality of the rule is tested (to maximize both significance and

predictive accuracy) and a size-limited set of best rules is retained.

Because rules are tested based on independent data (intrinsic test

data), performance values reflect the expected performance of the

rule, an independent verification that gives a more reliable

estimate of true rule performance. The final result is a set of rules

that can be projected onto a map to produce a potential

geographic distribution for the species under investigation.

Because each GARP run is an independent random-walk

process, following recent best-practices recommendations [30],

for each environmental data set (see above), we developed 100

replicate random-walk GARP models, and filtered out 90% based

on consideration of error statistics, as follows. The ‘best subsets’

methodology consists of an initial filter removing models that

omit (omission error = predicting absence in areas of known

presence) heavily based on the extrinsic testing data, and a second

filter based on an index of commission error ( = predicting

presence in areas of known absence), in which models predicting

very large and very small areas are removed from consideration.

Specifically, in DesktopGARP, we used a ‘‘soft’’ omission

threshold of 20%, and 50% retention based on commission

considerations; the result was 10 ‘best subsets’ models (binary

raster data layers) that were summed to produce a best estimate

of geographic prediction. We took as a final ‘best’ prediction for

each species that area predicted present by any, most, or all 10 of

these best-subsets models.

Predictive models of disease occurrence may be good or bad,

but model quality can be ascertained only via evaluation with

Author Summary

We analyzed the spatial and environmental distributions of
human plague cases across northeastern Brazil from 1966-
present, where the disease is now only rarely transmitted
to humans, but persists as a zoonosis of native rodent
populations. We elucidated environmental correlates of
plague occurrences by way of ecological niche modeling
techniques utilizing advanced satellite imagery and
geospatial datasets to better understand the ecology
and geography of the transmission of plague. Our analysis
indicates that plague foci in Brazil are indeed insular as
previously suggested. Furthermore, distribution of such
foci are likely not directly dependent on elevation, and
rather are contigent on climate and vegetation. Seasonal-
ity of zoonotic plague transmission is linked to variations
of these ecological parameters- particularly the increase in
precipitation and primary production of the rainy season.
Spatial analysis of transmission events afford a broad view
of potential plague foci distributions across northeastern
Brazil and indicate that the epidemiology of plague is
driven by a dynamic array of environmental factors.

Plague Ecology in Brazil
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independent testing data, preferably which are spatially indepen-

dent of the training data to avoid problems caused by spatial

autocorrelation and nonindependence of points [28]. Because

only data documenting presence of plague cases were available

for this study (i.e., no data were available to document that

plague was absent at particular sites), we used a binomial

probability approach to model validation: we compared observed

model performance to that expected under a null hypothesis of

random association between model predictions and test point

distribution. Because such tests require binary (i.e., yes-no)

predictions, our first step was to convert raw (continuous)

predictions to binary predictions. We considered three distinct

thresholds: areas predicted as suitable by any (i.e., $1) of the 10

replicate best-subsets models (ANY), areas predicted as suitable

by most (i.e., .5) of the 10 replicate best-subsets models (MOST),

and areas predicted as suitable by all of the 10 replicate best-

subsets models (ALL).

In the binomial tests, the number of test points was used as the

number of trials, the number of correctly predicted test points as

the number of successes, and the proportion of the study area

predicted present as the probability of a success if predictions and

points were associated at random [31]. All testing was carried out

in a series of spatially stratified tests that are detailed below. These

tests evaluated the ability of models to anticipate plague case

distributions across unsampled areas, considering a model as

validated if it predicts case distributions better than a ‘‘model’’

making random predictions. As such, these tests are considerably

more stringent than simple random partitions of occurrence data

or cross-validation exercises.

In view of the odd, focal distribution of northeastern Brazilian

plague cases (Figure 1), we carried out a series of tests of predictive

abilities of models among the five foci that are easily discernable.

In each case, we examined model predictivity in a k – 1

framework: with k = 5 foci, we tested all combinations of 4 foci by

means of their ability to predict spatial distributions of plague cases

in the fifth focus. Tests were developed within two spatial

contexts—within 50 km and within 200 km—surrounding the

known occurrences within the target focus.

Finally, we wished to develop a single overall model that

represents the best-available picture of plague case-occurrence risk

across northeastern Brazil, albeit not including statistical testing as

above. This model was built using all occurrence data available.

To assess uncertainty in these predictions based on all case-

occurrence information, we built 100 models each based on a

Figure 1. Overview of the area of analysis in northeastern Brazil. Inset shows geographic location. Map shows the five plague foci in the
region and known plague occurrences (black dots), each with its respective 50 km and 200 km testing regions (see Methods). Shading indicates
elevation, as follows: white = ,200 m, light gray = 200–500 m, medium gray = 500–800 m, and dark gray = .800 m.
doi:10.1371/journal.pntd.0000925.g001
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random 50% of the occurrence data chosen at random without

replacement. These models thus capture the degree to which

plague case-occurrence data availability may drive the results of

the analyses, and we consider areas that are predicted consistently

in all of these replicate analyses as most certain. We projected this

model onto environments across eastern Brazil to provide a

broader-extent visualization of the ‘niche’ of plague in northeast-

ern Brazil.

Niche Characterization
To explore environmental factors associated with positive and

negative predictions of suitability for DF transmission, we explored

further the environmental correlates of the model based on all

points. We plotted 1000 points randomly across areas of the

municipalities predicted as absent or present by this model. We

then assigned the value of each input environmental and

topographic layer to each of the random points, and exported

the associated attributes table in DBF format, which was then used

for comparisons of environmental characteristics of areas predict-

ed as suitable and unsuitable.

Results

The focal and discontinuous nature of plague case distributions

in northeastern Brazil is at once visible in the raw distribution of

the occurrence points derived at the outset of this study (Figure 1).

The discontinuities that have been assumed based on the clusters

of known occurrences are supported by our ecological niche

models, many of which show relatively small areas of highly

suitable conditions separated by less-suitable areas (see, e.g.,

Figure 2). What is more, this result is manifested with or without

elevation included in the analysis, and thus is not a simple

consequence of topographic differences; it is also manifested in

analyses based on both surface reflectance (NDVI) and climatic

variables. As such, we interpret the discontinuity of plague

distributions in northeastern Brazil as dependent on a multidi-

mensional suite of environmental variables.

The model predictions in general performed quite well in

anticipating plague case distributions in areas not included in

model training. That is, plague not only occurs in discontinuous

foci, but it also occurs under predictable and circumscribed

Figure 2. Example of model predictions for plague suitability in northeastern Brazil. The maps show the results of using occurrence data
from four plague foci to predict the distribution of cases in the southwest focus, based on climate data and AVHRR NDVI greenness index data, with
and without elevation data. 50 km and 200 km testing extents are shown. Shading indicates the number of best-subset models (see Methods) that
predict suitability- light gray = any (1–5), pink = most (6–9), and red = all (10).
doi:10.1371/journal.pntd.0000925.g002
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Table 1. Summary of results of binomial tests of model predictions at 50 km and 200 km extents.

50 km 200 km

Region Threshold Predictive success Prop. Area Binom. Prob. Prop. Area Binom. Prob.

NDVI with Elevation

SW any 84/85 0.754 ,0.001 0.664 ,0.001

SW most 60/85 0.369 ,0.001 0.337 ,0.001

SW all 26/85 0.136 ,0.001 0.125 ,0.001

SE any 7/7 0.967 0.793 0.813 0.234

SE most 7/7 0.839 0.292 0.654 0.051

SE all 6/7 0.550 0.015 0.424 0.002

E any 2/2 0.789 0.623 0.670 0.449

E most 2/2 0.333 0.111 0.307 0.094

E all 0/2 0.087 0.167 0.100 0.189

NE any 3/3 0.964 0.895 0.847 0.608

NE most 3/3 0.770 0.456 0.592 0.207

NE all 1/3 0.420 0.381 0.341 0.270

NW any 23/23 0.910 0.115 0.840 0.018

NW most 21/23 0.548 ,0.001 0.452 ,0.001

NW all 16/23 0.257 ,0.001 0.152 ,0.001

NDVI without Elevation

SW any 73/85 0.656 ,0.001 0.585 ,0.001

SW most 53/85 0.297 ,0.001 0.283 ,0.001

SW all 21/85 0.105 ,0.001 0.100 ,0.001

SE any 7/7 0.948 0.689 0.782 0.179

SE most 7/7 0.772 0.163 0.616 0.034

SE all 5/7 0.467 0.044 0.406 0.002

E any 2/2 0.699 0.488 0.663 0.439

E most 2/2 0.407 0.165 0.419 0.176

E all 0/2 0.193 0.348 0.243 0.426

NE any 3/3 0.951 0.861 0.885 0.694

NE most 3/3 0.867 0.651 0.749 0.420

NE all 2/3 0.694 0.335 0.609 0.226

NW any 23/23 0.974 0.549 0.944 0.263

NW most 20/23 0.842 0.273 0.769 0.073

NW all 18/23 0.587 0.014 0.550 0.006

Climate with Elevation

SW any 85/85 0.984 0.250 0.746 ,0.001

SW most 74/85 0.631 ,0.001 0.470 ,0.001

SW all 62/85 0.405 ,0.001 0.232 ,0.001

SE any 7/7 0.998 0.985 0.926 0.585

SE most 7/7 0.881 0.413 0.527 0.011

SE all 7/7 0.590 0.025 0.206 ,0.001

E any 1/2 0.557 0.311 0.560 0.313

E most 1/2 0.371 0.138 0.309 0.095

E all 0/2 0.169 0.309 0.163 0.300

NE any 3/3 0.773 0.462 0.461 0.098

NE most 3/3 0.138 0.003 0.200 0.008

NE all 0/3 0.033 0.097 0.085 0.234

NW any 20/23 0.425 ,0.001 0.259 ,0.001

NW most 15/23 0.356 0.001 0.169 ,0.001

NW all 2/23 0.266 0.965 0.126 0.569
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environmental conditions, which is the basis for the success of the

niche model predictions. The broadest panorama of results shows

significant results dominating in the southwestern and northwest-

ern foci (Table 1). However, the frequency of significant results in

these tests is clearly and linearly related to sample size on a log10

scale (P,0.05), suggesting that predictivity would be excellent

throughout the region were sample size distributions to be more

adequate.

Finally, visualizing plague distributions in environmental

dimensions (Figure 3), we see clear differences in the seasonal

pattern of variation in greenness between areas predicted as

suitable (i.e., suitability value of 10) and those predicted as

unsuitable (value 0). That is, no marked seasonal variation is

notable in areas predicted as unsuitable, whereas areas predicted

as suitable show a marked elevation in greenness in April and

May, and lower values thereafter, probably corresponding to

patterns of rainfall (i.e., rainy season beginning in March, and

ending by August).

Extending the model predictions across broader areas—namely

all of northeastern and eastern Brazil—yields a picture of potential

plague distribution across the region (Figure 4). Because plague

transmission to humans in Brazil is currently nil, and no broad-

extent data are available regarding circulation among mammals,

we have few means of testing the reality of these model projections.

However, at least in the case of models based on climatic

dimensions, the area predicted as suitable includes the Serra dos

Orgãos sites from which plague has been documented [5,32].

Discussion

The models that we developed for Brazilian plague offer several

intriguing insights into plague distribution, ecology, and natural

history in Brazil. However, understanding the limitations of these

models is critical, prior to any detailed interpretation or

exploration. First and foremost among the limitations of this study

are the occurrence data used as input: we relied on human case-

occurrence reports accumulated by the Serviço Nacional de

Referência em Peste do Centro de Pesquisas Aggeu Magalhães

and published in diverse scientific publications [6,7,8,9,13]. Our

use of these data thereby assumes that human case-occurrences

are representative of the ecological and environmental situations

under which plague is maintained in the zoonotic world, which

may not be the case, given the long chain of events necessary for a

zoonotic occurrence to be represented in our data set (i.e.,

transmission to human, correct diagnosis, international reporting).

On a finer scale, we also make the not-completely-satisfactory

assumption that that place of residence (at the level of the ranch or

settlement) is representative of the site of infection, which may be

variably true depending on the particular social network and local

economy.

One point that became clear in our analyses, confirming

previous opinions, is that plague has a highly discontinuous and

focal distribution in northeastern Brazil. Our initial suspicions that

elevation played a significant role in creating these ‘islands’ were

not supported, as analyses with and without elevation included as a

predictor variable reconstructed the insular nature of the

distribution. The NDVI-based analyses are particularly instruc-

tive, as they have no direct, mathematical relation to elevation [as

do climate interpolations; 21]—rather, the discontinuous plague

distribution in northeastern Brazil appears to reflect multidimen-

sional qualities of the landscape and environment (which of course

may be related biologically to elevation), rather than any simple

univariate causation.

Previous studies had attributed the cause of plague focality in

Brazil to elevation [1]. Baltazard [1] emphasized that Brazilian

plague foci are independent—that is, that transmission appears to

occur in uncorrelated patterns in different foci. Baltazard [1] also

pointed out that these foci are all in elevated areas, and that they

are subject to distinct precipitation regimes. Although plague has

frequently shown long periods of apparent inactivity (i.e., no

human cases), its reappearance at intervals nonetheless indicates its

long-term persistence.

50 km 200 km

Region Threshold Predictive success Prop. Area Binom. Prob. Prop. Area Binom. Prob.

Climate without Elevation

SW any 84/85 0.989 0.398 0.783 ,0.001

SW most 74/85 0.670 ,0.001 0.492 ,0.001

SW all 71/85 0.477 ,0.001 0.357 ,0.001

SE any 7/7 1.000 1.000 0.918 0.550

SE most 7/7 0.982 0.878 0.712 0.092

SE all 7/7 0.687 0.072 0.241 ,0.001

E any 1/2 0.497 0.247 0.506 0.256

E most 0/2 0.365 0.597 0.322 0.541

E all 0/2 0.000 ,0.001 0.000 ,0.001

NE any 3/3 0.791 0.495 0.467 0.102

NE most 3/3 0.240 0.014 0.259 0.017

NE all 1/3 0.003 ,0.001 0.022 0.001

NW any 19/23 0.410 ,0.001 0.217 ,0.001

NW most 16/23 0.341 ,0.001 0.147 ,0.001

NW all 14/23 0.269 ,0.001 0.070 ,0.001

doi:10.1371/journal.pntd.0000925.t001

Table 1. Cont.
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The foci are limited geographically, although their footprint

can appear to expand during major outbreaks. These expan-

sions appear to correspond to periods of particularly favorable

conditions for plague transmission in the highland area,

spreading out via valleys into the surrounding lowland areas.

If these favorable conditions persist, taking the form of a

prolonged winter, rodent host reproduction may be elevated,

and plague may be able to spread beyond the limit of the

highland areas into the dry sertão per se. This line of thinking led

Baltazard [1] to consider the plague foci of Serra da Ibiapaba,

Serra do Baturité, Serra do Machado, Serra de Uruburetama,

Serra da Pedra Branca, Serra das Matas in northern Ceará (see

Figure 1) as a single focus. Vieira and Coelho [4], in contrast,

argued that these foci should be treated as isolated and

independent. Our analyses suggest that these foci are dependent

on a broad suite of conditions, and are not simple or direct

correlates of elevation.

Another factor that may play in the picture of focality is the

presence of key rodent hosts for plague, including Necromys lasiurus

(formerly placed in Bolomys and Zygodontomys). Necromys is the rodent

that is most abundant in northeastern Brazilian plague foci, and

was considered as responsible for causing epizootics, from which

the infection spreads to other species [1]. Given the distribution of

this species, other species of rodents must be involved in plague

maintenance farther south, for example in the Serra dos Órgãos,

Rio de Janeiro state, Brazil. The relative roles of the distribution of

the rodent hosts and the fleas (Polygenis spp.) remain to be

evaluated in detail.

Figure 3. Visualization of year-round trends in AVHRR NDVI greenness index for plague-suitable and unsuitable areas. Areas
predicted as suitable (i.e., suitability value of 10) versus unsuitable (i.e., suitability value of 0) for plague transmission are contrasted.
doi:10.1371/journal.pntd.0000925.g003
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Figure 4. Projection of models based on all available occurrence data from northeastern Brazil across eastern Brazil. The green star
represents the approximate location of the Serra dos Orgãos plague focus. Shading indicates the number of best-subset models (see Methods) that
predict suitability- light gray = any (1–5), pink = most (6–9), and red = all (10).
doi:10.1371/journal.pntd.0000925.g004
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31. Anderson RP, Gómez-Laverde M, Peterson AT (2002) Geographical distribu-

tions of spiny pocket mice in South America: Insights from predictive models.

Global Ecology and Biogeography 11: 131–141.

32. Almeida AMP, Brasil DP, Melo MEB, Nakazawa M, Almeida CR (1985)

Demonstração de atividade pestosa no foco da Serra dos Orgãos (Rio de Janeiro,
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